In Vitro and In Vivo Activity of Lucitanib in FGFR1/2 Amplified or Mutated Cancer Models12
نویسندگان
چکیده
The fibroblast growth factor receptor (FGFR) pathway has been implicated both as an escape mechanism from anti-angiogenic therapy and as a driver oncogene in different tumor types. Lucitanib is a small molecule inhibitor of vascular endothelial growth factor (VEGF) receptors 1 to 3 (VEGFR1 to 3), platelet derived growth factor α/β (PDGFRα/β) and FGFR1-3 tyrosine kinases and has demonstrated activity in a phase I/II clinical study, with objective RECIST responses in breast cancer patients with FGFR1 or FGF3/4/19 gene amplification, as well as in patients anticipated to benefit from anti-angiogenic agents. We report here the in vitro and in vivo antitumor activity of lucitanib in experimental models with or without FGFR1/2 amplification or mutations. In cell assays, lucitanib potently inhibited the growth of tumor cell lines with amplified FGFR1 or mutated/amplified FGFR2. In all xenograft models studied, lucitanib demonstrated marked tumor growth inhibition due to potent inhibition of angiogenesis. Notably, in two lung cancer models with FGFR1 amplification, the antitumor efficacy was higher, suggesting that the simultaneous inhibition of VEGF and FGF receptors in FGFR1 dependent tumors can be therapeutically advantageous. Similar antitumor activity was observed in FGFR2 wild-type and amplified or mutated xenograft models. Pharmacokinetic studies showed lucitanib plasma concentrations in the micro/sub-micromolar range demonstrated drug accumulation following repeated lucitanib administration.
منابع مشابه
FGFR1 promotes the stem cell-like phenotype of FGFR1-amplified non-small cell lung cancer cells through the Hedgehog pathway
Cancer stem cell-like phenotype is critical for tumor formation and treatment resistance. FGFR1 is found to be amplified in non-small cell lung cancer, particularly in the lung squamous cell cancer (LSCC). Whether FGFR1 contributes to the maintenance of stem cell-like phenotype of FGFR1-amplified lung cancer cells remains elusive. In this study, treatment with FGFR1 inhibitor AZD4547 suppressed...
متن کاملTargeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer.
PURPOSE Fibroblast growth factor receptor 1 (FGFR1) and FGFR2 amplifications are observed in approximately 10% of breast cancers and are related to poor outcomes. We evaluated whether dovitinib (TKI258), an inhibitor of FGFR1, FGFR2, and FGFR3, presented antitumor activity in FGFR-amplified breast cancers. EXPERIMENTAL DESIGN Preclinical activity of dovitinib was evaluated in both breast canc...
متن کاملLow Dose of Lenalidomide Enhances NK Cell Activity: Possible Implication as an Adjuvant
Background: Lenalidomide, a synthetic immunomodulatory drug, has a wide range of features including anti-angiogenic and anti-proliferative properties. To date, researchers have shown that lenalidomide is capable of ameliorating the immune system factors and antitumor responses. Most researchers have reported that lenalidomide enhances the immune response in certain cancer patients through sever...
متن کاملHuman Wharton’s jelly mesenchymal stem cells-derived secretome could inhibit breast cancer growth in vitro and in vivo
Objective(s): Controversial results have been reported regarding the anti-tumor properties of extracellular vesicles derived from mesenchymal stem cells (MSCs). The present study was conducted to evaluate whether secretome derived from Human Wharton’s jelly mesenchymal stem cells (hWJMSCs) may stimulate or inhibit breast cancer growth in vitro and in vivo.<st...
متن کاملThe Role of Probiotics in Cancer Treatment: Emphasis on their In Vivo and In Vitro Anti-metastatic Effects
Probiotics are defined as live bacteria and yeasts that exert beneficial effects for health. Among their various effects, anti-cancer properties have been highlighted in recent years. Such effects include suppression of the growth of microbiota implicated in the production of mutagens and carcinogens, alteration in carcinogen metabolism and protection of DNA from oxidative damage as well as reg...
متن کامل